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Abstract 

The aim of this study was to test the ability of mini NIR reflectance spectroscopy to predict beef 

quality traits. Sixty M. longissimus thoracis were collected and spectra were obtained prior to beef 

quality trait analysis. Calibration equations were developed from reference data (n=60) of pH, 

color traits (lightness, redness and yellowness), drip loss (%), cooking loss (%), CP (%), EE (%), 

moisture (%), DM (%), and Ash (%) using partial least squares regressions. Predictive ability of 

the models was assessed by coefficient of determination of cross-validation (R2CV) and root mean 

square error of cross-validation. Predictions models were satisfactory (R2CV = 0.95) for pH, 

(R2CV = 0.96) for lightness (L*), (R2CV = 0.96) for redness (a*), (R2CV = 0.97) for yellowness 

(b*), (R2CV = 0.95) for drip loss, (R2CV = 0.95) for cooking loss, (R2CV = 0.94) for CP, (R2CV 

= 0.95) for EE, (R2CV = 0.91) for moisture, (R2CV = 0.91) for DM and (R2CV = 0.91) for ash. 

The ratio performance deviation is 5.35, 5.34, 5.87, 5.16, 4.64, 4.81, 4.45, 4.95, 3.36, 4.73 and 

4.47 for L*, a*, b*, pH, drip loss, cooking loss, CP, EE, moisture, DM and Ash respectively which 

indicates that all values are adequate for analytical purposes. Range error ratio are 20.69, 22.97, 

27.11, 18.92, 20.74, 16.20, 17.80, 17.52, 14.96, 17.89 and 17.87 for L*, a*, b*, pH, drip loss, 

cooking loss, CP, EE, moisture, DM and ash respectively. From the findings of this study it can be 

concluded that mini NIRS is a suitable tool for a rapid, non-destructive and reliable prediction of 

beef quality 

Introduction 

Meat contains high biological important macro and micronutrients, all of which are essential for 

better human health throughout life. World trade in meat and meat products is forecast at 36.0 

million tones in 2019, up 6.7 percent from 2018. In Bangladesh there are 402.56 million livestock 

and poultry from which 7.51 million metric ton meat is produced in 2019 (DLS, 2019). The quality 

of meat (e.g. color, pH, drip loss, cooking loss, CP, EE, Ash etc.) is technologically and 

economically important not only for food-processing industry but also for consumers as an 

important attribute during purchasing meat (Akhter et al., 2009; Baset et al., 2003; Bithi et al., 

2020; Disha et al., 2020; Habiba et el., 2021; Rahman et al., 2014). In Bangladesh, meat quality 

evaluation still depends on traditional analytical technology which involves chemical, biological 

and microbiological determinations but those are tedious, time-consuming, sample destructive and 

environmentally unfriendly (Rahman et al., 2020; Rana et al., 2014; Haque et al., 2017; Modak et 

al., 2009). The lack of fast, reliable and non-destructive methods for determining meat 

characteristics in the carcass and meat cuts has been one of the main obstacles for the development 

of quality control in the meat industry. Meat processing industries expect accurate, faster, real-

time, low-cost and non-chemical detection technologies. In the meat industry, in order to reduce 

economic losses during processing, as well as to supply high-quality products consistently, quality 

control procedures must be carried out (Akhter et al., 2020; Liao et al., 2010; Lina et al., 2020; 

Sarker et al., 2021). Superior quality of these products is always demanded by consumers and is 

considered as a key factor for success in today’s highly competitive market (Islam et al., 2019; 

Kamal et al., 2019; Prieto et al., 2009; Rokib et al., 2019; Saba et al., 2018). To realize these needs 

mentioned above and to fulfill consumers’ satisfaction, it is very important to provide meat that 

can better meet the customers’ needs and market requirements. Therefore, it is a crucial element 

within the meat industry to accurately assess meat and guarantee the quality and safety. Different 

techniques such as sensory analysis, chemical procedures and instrumental methods have been 

employed to provide information about meat quality (Brondum et al., 2000; Jahan et al., 2018; 

Islam et al., 2018). Sensory analysis is often implemented by professional staff. This method has 

been widely used in many food research fields. However, it is subjective, laborious, time-

consuming and inconsistent. Chemical procedures and instrumental methods have been used in 

detecting quality attributes for a long time, which are more convenient, precise and effective than 

sensory analysis (Nicola et al., 2007; Siddiqua et al., 2018; Khan et al., 2017; Hashem et al., 2021). 

In terms of instrumental methods, pH is traditionally measured by pH meter by inserting it into the 

muscle directly after incision of the muscle, and colorimeters are commonly utilized for meat color 

evaluation. However, most of the above-mentioned techniques are destructive, In contrast to 

conventional methods, many novel and automatic technologies based on mechanical, optical, 

dielectrics, X-rays, spectroscopy, and nuclear magnetic resonance have emerged for detecting
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these quality and safety attributes such as: Ultrasound technique, Spectroscopy technique, Computer vision, CT scanning etc. 

There are advantages and disadvantages of these methods. Ultrasound technique is rapid, non-destructive and non-polluting but 

it is very sensitive, easily affected by operators, measurement sites as well as the ultrasonic frequency and only detecting 

chemical compositions for some specific parts. Spectroscopy technique is simple, provides spectral information, and is able to 

detect internal attributes but limited sensitivity to minor components and complicated analysis. Computer vision providing 

spatial information, higher accuracy than manual inspection, able to detect external attributes and suitable for online detection 

but limited multi-constituent information, unable to detect internal attributes; and CT scanning is non-invasive, provides detailed 

images but it is expensive, requires longer evaluation time and has limited range of application. Among them, spectroscopy 

technique included near infrared spectroscopy (NIR), mid-infrared spectroscopy (MIR), far infrared spectroscopy (FIR) and 

Raman spectroscopy has been considered as one of the most promising technique (Williams, 2008). NIR spectroscopy has a 

great potential for the estimation of quality and safety attributes in meat and meat products in recent years, and has been 

considered as one of the effective and progressive techniques (Warriss, 2004). It is a potential analytical tool for sensitive and 

fast analysis with simplicity in sample preparation allowing a simultaneous assessment of numerous meat properties (Williams, 

1987). NIRS has shown enormous potential to predict quality attributes, such as protein, fat, moisture, ash, myoglobin, pH value, 

water-holding capacity (WHC), color, marbling, tenderness and safety attributes (freshness, total bacterial count, adulteration) 

(Alomar et al., 2003). NIRS is an analytical technique that uses a source producing light of known wavelength pattern (usually 

800–2500 nm) and that enables to obtain a complete picture of the organic composition of the analyzed substance/material 

(Kempen, 2001). It is based on the principle that different chemical bonds in organic matter absorb or emit light of different 

wave lengths when the sample is irradiated. Nowadays NIRS is widely and successfully used in many different fields, also for 

feed and food analysis. However, standard methods for quality evaluation of meat products, such as color and pH, are often 

rather imprecise and time consuming. Near-infrared spectroscopy (NIRS) is fast, reliable, accurate and inexpensive 

(Prevolnik et al., 2004; Teye et al., 2013) and has great potential as a substitute for chemical composition analysis of meat and 

meat products (Andres et al., 2007). 

Recent developments in microfabrication and miniaturization of optical systems have allowed the creation of “palm-sized” 

spectrophotometers which are compact, mobile and can be carried in a pocket. To our knowledge, only one study has been 

conducted by Dixit et al (2020) by mini NIR spectroscopy for predicting intramascular fat in lamb.  In the current study, a 

“palm-sized” mini NIR spectrophotometer has been used for predicting physicochemical traits of beef combined with 

Chemometrics. Therefore, the objective of the present study was to evaluate the feasibility of mini NIRS to predict drip loss, 

cooking loss, color and proximate components in beef. 

Materials and Methods 
Experimental site 

This experiment was conducted at Meat Science Laboratory under the Department of Animal Science, Bangladesh Agricultural 

University, Mymensingh.  

Meat samples preparation 

In total, 60 samples of M. longissimus thoracis (between the 12th and 13th ribs) were collected from 60 carcasses of indigenous 

cattle from a local market in the Mymensingh district of Bangladesh at 7.00 am. The meat samples were immediately transferred 

to the Animal Science Meat Laboratory, Bangladesh Agricultural University, Mymensingh in an icebox. The collected meat 

samples were weighed and stored in a refrigerator for 24 hours at 4°C for further analysis. After 24 hours, the samples were 

removed from the refrigerator and then kept on a tray for about 10-12 minutes to release absorbed moisture and then used for 

NIR spectra collection.  

NIR spectra acquisition  

NIR reflectance spectra were collected using mini NIR (DLP NIRscan Nano EVM, Texas Instruments Inc., Texas, USA). Mini 

NIR works in the wavelength range of 900-1700 nm with an optical resolution of 10 nm. A scan configuration specifies the 

following parameters of a scan: Wavelength range: Start and End wavelengths (in nm) or spectral range of interest for the scan. 

The minimum wavelength is 900 nm and the maximum wavelength is 1700 nm. Width in nm: This number must be greater than 

8 nm and corresponds to the desired smallest wavelength content that needed to resolve in a scan. The DLP NIRscan Nano 

optical resolution is 10 nm, so values less than 10 nm result in lower signal intensity. Number of patterns: This number defines 

how many wavelength points are captured across the defined spectral range. Depending on the previous setting, the GUI 

computes the maximum number of patterns and indicates them as the "Max Limit." Number of scans to average: This is the 

repeated back-to-back scans that are averaged together. Refrigerated beef samples were thawed and subjected to spectroscopic 

analysis while packed in ziplock plastic bags. For NIR analysis, the sample window of mini NIR was placed over the meat 

samples (60) surface and the spectra were collected at 3 different locations. Each spectrum was recorded at room temperature in 

the NIR region of 900 to 1700 nm with a spectral increment of about 3.90 nm between the contiguous bands, thus producing a 

total of 228 bands. 

Chemical and physical attributes analyses 

Proximate components such as dry matter (DM), Ether Extract (EE), crude protein (CP) and ash were carried out according to 

the methods (AOAC, 1995). All analyses were done in triplicate and the mean value was reported. The differences in weight 

between the fresh and dried samples represent the water content. An oven (GALLENKAMP Hot Box Oven with Fan - Size 2 

CHF097 XX2.5) was used for determining dry matter kept for 24 hrs at 105º C. Crude protein (CP) was determined using total 

nitrogen content of each sample by using kjeldahl apparatus. Ether extract content was determined by Soxhlet apparatus using 

diethyl ether. Total ash content was measured using muffle furnace where porcelain crucibles with samples were heated at 550°C 

for 6 hours, then cooled inside desiccators and weighed. Cooking loss was measured by using a hot water bath and food-grade 

thermometer at 71ºC internal temperature of meat sample. Cooking loss was determined following the methods of Haque et al. 

(2017) and Rima et al. (2019). Drip loss was determined following the methods of Arain et al. (2010). 
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The pH was collected on intact M. longissimus thoracis using a Hanna PH meter (Hanna Instruments HI99163 Portable HACCP 

Compliant pH Meter for Meat); three replicates were taken on each sample and averaged to form the final pH reading.  

Color was measured on M. longissimus thoracis after 24 h of freezing at 4° C using a Konica Minolta Chroma Meters CR-410; 3 

consecutive readings were recorded on meat samples and averaged to form the final color reading for each sample. Meat color 

was expressed according to the CIE-Lab color space by reporting lightness (L*), redness (a*), and yellowness (b*) (CIE, 1978). 

Saturation index (SI) was calculated as SI =  𝑎∗2 + 𝑏∗2  and hue angle (H) as H = tan−1 (b*/a*) (AMSA, 1991). 

Model development and spectral data analysis 

Calibrations and predictions of beef samples based on full spectra (228 variables) were established using partial least-squares 

regression (PLSR). The calibration models were strictly built using the calibration dataset and validated with cross-validation 

technique using The UNSCRAMBLER program (version 9.7.0, Camo, Trondheim, Norway). In this study, leave-one-out (i.e. 

full) cross-validation method was employed to validate the PLSR models. This was done by removing one sample (test sample) 

from the data set and PLSR model was then established for the remaining samples (training sample). Finally, the model was used 

to predict the sample left out. This procedure was repeated for every sample in the data set, giving a more realistic measure of 

the predictive errors of the model. The precision and the predictive capabilities of the models were evaluated by the coefficients 

of determination (R2), root-mean-square error of calibration (RMSEC) and the root-mean-square error estimated by cross-

validation (RMSECV). The best model was selected for each attribute on the basis of the highest determination coefficient (R2) 

and lowest standard error of calibration (RMSEC) and validation (RMSECV). The R2 and RMSEC or RMSECV are defined as 

follows: 

       (1) 

    (2) 

Where ŷi= predicted value of the ith sample, yi = measured value of the ith sample, N = number of samples. 

Moreover, to assess the practical utility of the prediction models the ratio performance deviation (RPD) and the range error ratio 

(RER) were calculated. The RPD was calculated as the ratio of the standard deviation (SD) to the SEcv of a given trait and the 

RER was calculated as the ratio between the range and the SECV of the trait (Edney et al., 1994). Ratio performance deviation 

values higher than 10 are considered equivalent to reference method (Williams and Sobering, 1993) and values above 2.5 are 

considered adequate for analytical purposes (Sinnaeve et al., 1994). The RER is a method of standardizing the SECV by relating 

it to the range of the reference data. For example, RER values of less than 6 indicate very poor classification and are not 

recommended for any application; RER values between 7 and 20 classify the model as poor to fair and indicate the model could 

be used for screening purposes, and RER values between 21 and 30 indicate a good classification suggesting the model would be 

suitable for a role in quality control systems ((Williams and Norris, 2001). 

Results and Discussion 
Reference values for physicochemical attributes of longissimus dorsi muscle of beef 

Compositional values of beef samples are given in Table 1, expressed on a fresh basis, that is, in the same form as samples were 

scanned. To provide an overview of the structure of the samples used in the investigation, the mean, range, standard deviation 

(SD), coefficient of variance (CV) for color parameters (L*, a*, b*), pH, drip loss (DL%), cooking loss (CL%), dry matter 

(DM%), moisture (%), crude protein (CP%), ether extract (EE%) and ash (%) for all muscles determined by laboratory reference 

methods are summarized in Table 1. 

Table 1. Descriptive statistics of chemical composition in the tested beef muscle samples 

Parameter Mean ± SD (%) CV (%) Range (Min-Max) 

L* 42.70 ± 3.23 7.56 37.47- 49.97 

a* 14.31 ± 1.59 11.11 10.78 - 17.62 

b* 11.51 ± 1.60 13.9 8.01 - 15.41 

pH 5.93 ± 0.09 1.52 5.80 - 6.13 

DL (%) 3.35 ± 0.49 14.62 2.46 - 4.65 

CL (%) 28.44 ± 2.26 7.95 24.97 - 32.58 

DM (%) 25.67 ± 2.35 9.15 21.17 - 28.60 

 Moisture (%) 76.87 ± 1.07 1.39 73.17 - 78.87 

CP (%) 22.60 ± 1.91 8.45 17.98 - 25.62 

EE (%) 2.29 ± 0.82 35.81 0.7 - 3.60 

Ash (%) 1.21 ± 0.41 33.88 0.83 - 2.47 

H 38.81± 45.17 51.36 36.61 - 41.17 

SI 18.36±2.25 17.79 13.43-23.4 

L*=lightness, a*=redness, b*=yellowness, H= hue angle, SI=saturation, DL = drip loss, CL = cooking loss, DM = dry matter, CP = crude 
protein, EE = ether extract 
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To provide an overview of the physicochemical attributes of the samples used in the investigation, the mean, range, standard 

deviation, and coefficient of variation for drip loss (DL %), cooking loss (CL %), moisture (%), dry matter (DM %), crude 

protein (CP %), ether extract (EE %) and ash (%) for all muscles determined by laboratory reference methods are summarized in 

Table 1. Average moisture, dry matter, protein, ether extract and ash contents of beef from longissimus dorsi muscle were found 

as 76.87, 25.67, 22.60, 2.29, and 1.21 %, respectively in this study. Meat color (L*, a*, b*) was quite normal. In case of a*, 

mean value was 14.71, CV was 11.11 and highest value was 17.62 and lowest value was 10.78. Maximum, minimum and mean 

value was 15.41, 8.01 and 11.51 respectively in case of b*. The L* values averaged 42.70 and ranged from 37.47-49.97 which is 

considered normal for beef (Chambaz et al., 2001). Maximum value of pH was 6.13 and minimum was 5.8. The average pH 

value was 5.93. The range is considered normal for beef (Tarrant and Mothersill, 1977). 

For cooking loss mean value was 28.44, SD 2.26, CV 7.95, the maximum value was 24.97 and the minimum value was 32.58. 

According to Marchi et al. (2013), the values were 37.65, 3.71, 9.85, 28.58 - 45.69 for mean, SD, CV, and range respectively, 

regarding cooking loss. 

The coefficient of variation of all measured attributes suggesting good variability of the data except pH (1.52%) and moisture 

(1.39%). The low variability of pH has been confirmed by several authors in beef (Andres et al., 2008), chicken (De Marchi et 

al., 2007), and pork (Liao et al., 2010).  

Development of calibration model based on NIR spectra  

NIRS calibration and prediction statistics for color parameters (L*, a*, b*), pH, drip loss (%), cooking loss (%), dry matter (%), 

moisture (%), crude protein (%), ether extract (%) and ash (%) of cattle longissimus dorsi muscle are presented in  Table 2. 

Spectral data at full wavelength range (900-1700 nm) with 228 variables were modeled using linear multivariate method of 

PLSR. The performance of the calibration models was optimized by leave-one-out cross-validation. The detailed results of PLSR 

are listed in Table 2, where for PLS model, R2
c, R

2
cv, Rp, RMSEC, and RMSECV reported. In this study, the calibration results 

were highly correlated to cross-validation results. The similarity in model performance implied that the models did not over-fit 

data, and the majority of the variance presented in the measured values was reproduced in the prediction model. Based on model 

performance in terms of R2
c, R2

cv, RMSEC and RMSECV, it seems that the PLSR model was reasonably appropriate for 

predicting the physicochemical attributes of beef.  

Table 2. NIRS calibration and prediction statistics for different parameters 

Attributes Calibration Cross-validation SD RPD RER 

R2c RMSEc R2cv RMSEcv 

L* 0.985182 0.389605 0.964377 0.604081 3.23 5.35 20.69 

a* 0.985254 0.190950 0.964164 0.297676 1.59 5.34 22.97 

b* 0.986923 0.181840 0.970539 0.272936 1.60 5.87 27.11 

pH 0.985507 0.010392 0.959176 0.017441 0.09 5.16 18.92 

DL (%) 0.981477 0.065773 0.952277 0.105575 0.49 4.64 20.74 

CL (%) 0.982551 0.296645 0.956259 0.469669 2.26 4.81 16.20 

Moisture 0.968167 0.190024 0.910547 0.318539 1.07 3.36 17.89 

Dry Matter 0.978851 0.339258 0.954681 0.496621 2.35 4.73 14.96 

Crude Protein 0.982020 0.253490 0.948502 0.429006 1.91 4.45 17.80 

Ether Extract 0.981292 0.110906 0.958342 0.165494 0.82 4.95 17.52 

Ash 0.983211 0.052103 0.947915 0.091772 0.41 4.47 17.87 

R2
C = calibration coefficient; R2

CV = cross-validation coefficient; SD = standard deviation; RMSEC = standard error of 

calibration; RMSECV = standard error of cross-validation; RPD = residual standard deviation; RER = range error ratio. 

Predictive ability of the PLS model is assessed by co-efficient of determination of cross-validation (R2
CV) and root mean square 

error of cross-validation (RMSECV). The best model for each trait is selected on the basis of the highest co-efficient of 

determination of cross-validation (R2
CV) and the lowest root mean square error of cross-validation (RMSECV). R2cv 0.96, 0.96, 

0.95, 0.96, 0.95, 0.96, 0.95, 0.91, 0.94, 0.95 and 0.94 for L*, a*, b*, pH, drip loss, cooking loss, DM, moisture, CP, EE and ash 

respectively; and RMSECV values are 0.60, 0.29, 0.28, 0.02, 0.11, 0.47, 0.50, 0.32, 0.43, 0.17 and 0.09 for L*, a*, b*, pH, drip 

loss, cooking loss, DM, moisture, CP, EE and ash respectively. So results above values indicate that PLS model has prediction 

ability. R2
C for moisture and DM were 0.96, 0.98 which considered normal (Tøgersen et al., 1999; Alomar et al., 2003) 

To assess the practical utility of the prediction models the ratio performance deviation (RPD) and the range error ratio (RER) 

were calculated. RPD were 5.35, 5.34, 5.87, 5.16, 4.64, 4.81, 4.73, 3.36, 4.45, 4.95 and 4.47 for L*, a*, b*, pH, drip loss, 

cooking loss, DM, moisture, crude CP, EE and ash respectively. It indicates that all values are adequate for analytical purposes 

as values above 2.5 are adequate for analytical purposes (Sinnaeve et al., 1994). Range error ratio were 20.69, 22.97, 27.11, 

18.92, 20.74, 16.20, 14.96, 17.89, 17.80, 17.52 and 17.87 for L*, a*, b*, pH, drip loss, cooking loss, dry matter, moisture, crude 

protein, ether extract and ash respectively. The range of the reference data, RER value between 7-20 classify the model as poor 

to fair and indicate it could be used for screening purposes and RER values between 21 and 30 indicate a good classification 

suggesting the model could be suitable for application in quality control (Williams and Norris, 2001). So for the above RER 

values the model is fair to good. 

To visualize graphically the performance of the PLS calibration models, the measured value and its predicted values resulting 

from the optimal PLS models are plotted and displayed in Figures 1, 2, 3, 4, 5 and 6. 
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Figure 1. Prediction of  L* and a* using PLS model for (a) calibration and (b) cross validation. 

 

  

 

 

Figure 2. Prediction of b* and pH using PLS model for (a) calibration and (b) cross validation. 
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Figure 3. Prediction of drip and cooking loss using PLS model for (a) calibration and (b) cross validation. 

 

  

 
 

Figure 4. Prediction of DM and moisture using PLS model for (a) calibration and (b) cross validation. 
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Figure 5. Prediction of CP and EE using PLS model for (a) calibration and (b) cross validation. 
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0.90 for all all measurable traits. The results showed that mini NIR spectroscopy has potential as a non-destructive and rapid 

method to predict beef quality attributes.  
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