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Review Article 

Relation among meat pH, color and tenderness- A review 

PR Sristi1, NR Das1, A Akhter2, NM Kaniya2, MA Hashem1* 

Abstract 

Meat quality is fundamentally influenced by postmortem biochemical changes, with pH 

decline playing a central role in determining both visual appeal and eating satisfaction. 

This review explores the interrelationships among meat pH, color, and tenderness, 

focusing on how variations in muscle acidification impact these key quality traits. A rapid 

pH decline at high carcass temperatures can result in pale, soft, exudative (PSE) meat, 

while an insufficient drop may lead to dark, firm, dry (DFD) meat—both of which are 

undesirable. Meat color is primarily governed by the chemical state of myoglobin, which is 

sensitive to pH-induced changes in muscle structure and oxygenation. Tenderness is 

likewise influenced by pH, as it affects the activity of endogenous proteolytic enzymes like 

calpains and the structural integrity of muscle fibers. Optimal tenderness and color are 

generally achieved when the ultimate pH ranges between 5.5 and 5.8. Extremely low or 

high pH values impair enzyme function and protein integrity, leading to poor textural and 

visual quality. This paper also highlights recent advancements in molecular biology and 

omics technologies that offer new insights into predicting and controlling meat quality 

through pH regulation. Understanding these complex relationships can help the meat 

industry refine processing techniques and improve consumer satisfaction. 

Introduction 

Recently not only the quantity but also the quality of produced milk and beef has become 

increasingly important. That situation has resulted from the increased consciousness and 

demand of consumers who expect food characterized by special dietetic or health 

properties (Brunso et al., 2005). Meat quality is primarily assessed by consumers based on 

visual appearance, with color being the most important indicator of freshness and 

acceptability at the point of purchase (Mancini and Hunt, 2005). Any deviation from the 

expected lean color can lead to consumer rejection and reduced purchasing intent. 

Numerous factors influence beef color and its stability, many of which are associated with 

muscle metabolism, including ultimate pH (McKeith et al., 2016; Zhang et al., 2018), 

myoglobin content (Wang et al., 2021), mitochondrial abundance and function (McKeith et 

al., 2016; Mitacek et al., 2019; Ramanathan et al., 2021), metmyoglobin-reducing activity 

(Bekhit and Faustman, 2005). The complex interactions among these metabolic factors 

necessitate further investigation to fully understand their combined effects on beef lean 

color and stability. 

While color is critical at the point of purchase, tenderness remains a key determinant of 

consumer satisfaction during consumption. Consumers have consistently shown a 

willingness to pay a premium for beef with guaranteed tenderness. Intrinsic factors such as 

ultimate pH (Grayson et al., 2016) all contribute to tenderness development. However, 

these variables alone cannot fully explain the variability observed in beef tenderness, 

highlighting the need for deeper understanding of the underlying mechanisms. 

Recent advancements in proteomics and metabolomics have enabled the identification of 

specific molecular markers associated with meat quality traits. These approaches have 

revealed that certain proteins and metabolites, involved in a wide array of biological 

pathways, are closely linked to both color stability (Canto et al., 2015; Nair et al., 2016; 

Nair et al., 2018; Ramanathan et al., 2020a; Ramanathan et al., 2020b) and tenderness 

(Antonelo et al., 2020; Gagaoua et al., 2019; King et al., 2019; Picard et al., 2018). Meat 

quality traits such as pH, color, and tenderness are interdependent and play vital roles in 

consumer preference and processing characteristics. Postmortem biochemical processes, 

particularly the rate and extent of pH decline, significantly influence the structural and 

sensory characteristics of meat (Purslow et al., 2020). 

Therefore, understanding the interrelationship between pH, color, and tenderness is 

essential for improving beef quality and meeting consumer expectations. The aim of this 

review paper is to comprehensively explore the interrelationship among meat pH, color, 

and tenderness, focusing on the biochemical, physiological, and technological factors that 

influence these quality attributes. By analyzing how postmortem muscle pH affects meat  
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appearance and texture, the paper seeks to enhance understanding of meat quality development and provide insights for 

improving animal handling and meat processing strategies to ensure consistent and desirable meat products. 

Meat pH refers to the measure of acidity or alkalinity of muscle tissue after the animal has been slaughtered. It is a critical 

indicator of meat quality, influenced primarily by the biochemical changes that occur in the muscle during the postmortem 

period (Lawrie & Ledward, 2006). Following slaughter, the cessation of blood circulation halts oxygen supply, forcing muscle 

cells into anaerobic metabolism. Glycolysis leads to the accumulation of lactic acid and a decline in muscle pH from ~7.2 to 

values between 5.4 and 5.8 within 24 hours (Lawrie & Ledward, 2006). The rate and final value of this pH decline play a critical 

role in meat quality. 

This pH decline is time-sensitive and influenced by factors such as: The extent of pH decline postmortem largely depends on the 

amount of muscle glycogen present at the time of slaughter. Glycogen is the primary substrate for anaerobic glycolysis, which 

continues after death and leads to lactic acid accumulation, thereby reducing muscle pH. If animals have adequate glycogen, the 

pH typically drops to around 5.5 within 24 hours. However, animals with depleted glycogen (due to prolonged stress or fasting) 

undergo limited glycolysis, resulting in a higher ultimate pH and darker, drier meat—commonly referred to as DFD (Dark, Firm, 

Dry) meat (Warriss, 2010). 

Postmortem muscle temperature affects the rate of glycolysis and enzyme activity. High ambient temperatures accelerate 

metabolic reactions, leading to rapid pH decline while the carcass is still warm, which may cause protein denaturation, resulting 

in PSE (Pale, Soft, Exudative) meat in pigs and poultry. Conversely, low temperatures may slow glycolysis and delay pH fall, 

affecting the meat’s color and water-holding capacity (Lawrie & Ledward, 2006). 

Stress prior to slaughter—due to transport, rough handling, fighting, or unfamiliar environments—triggers the release of 

catecholamines and cortisol, which stimulate glycogen breakdown for energy. If the stress is acute, it can lead to rapid glycogen 

use and subsequent PSE meat. If the stress is chronic, glycogen stores are depleted over time, causing insufficient lactic acid 

production, resulting in high ultimate pH and DFD meat (Gregory & Grandin, 2007).  

Muscles are composed of different fiber types: Type I (slow-twitch, oxidative) and Type II (fast-twitch, glycolytic). Type II 

fibers contain more glycogen and have higher glycolytic capacity, thus contributing to a faster and more pronounced pH decline 

postmortem. In contrast, muscles with more Type I fibers have slower glycolysis, leading to a gradual pH drop and potentially 

different meat characteristics in terms of tenderness, color, and water retention (Kim et al, 2014). 

Rapid pH decline while the carcass temperature remains high can lead to protein denaturation and pale, soft, exudative (PSE) 

meat, particularly in pigs (Petracci & Cavani, 2012). Conversely, insufficient pH drop (high ultimate pH > 6.0) may result in 

dark, firm, dry (DFD) meat due to reduced WHC and limited proteolysis (Adzitey & Nurul, 2011). 

Postmortem glycolysis leads to lactic acid buildup, lowering muscle pH. Normal ultimate pH (pHu) for meat is around 5.5–5.8. 

Deviations result in DFD (dark, firm, dry) or PSE (pale, soft, exudative) meat, both considered undesirable (Zhou et al., 2017; 

Mancini & Hunt, 2005). 

According to Lancaster et al. (2020), beef samples with higher pHu tend to have greater water retention and lower cooking loss. 

This is because higher pHu preserves myofibrillar structure and reduces protein denaturation. 

Relationship Between pH and Meat Color 

Color is the first quality attribute perceived by consumers and serves as a primary visual cue for assessing meat freshness and 

quality. It is predominantly influenced by the chemical state of myoglobin, the primary pigment responsible for meat color, 

which is directly affected by muscle pH (Mancini & Hunt, 2005; Varnam et al., 1995). Depending on oxygen availability, 

myoglobin exists in different forms: deoxymyoglobin (purple) in oxygen-poor environments, oxymyoglobin (bright red) in 

oxygen-rich conditions, and metmyoglobin (brown) when oxidized this last form is generally perceived as lower quality 

(Varnam et al., 1995). 

Muscle pH plays a central role in determining meat color by affecting myoglobin chemistry and muscle protein structure. A 

rapid postmortem pH decline causes denaturation of sarcoplasmic proteins, reducing water holding capacity and increasing light 

scattering, which leads to pale meat color; a condition known as PSE (pale, soft, exudative) (Toldrá et al., 2006; Hunt et al., 

2016; Khliji et al., 2016). At low pH, limited oxygen diffusion and greater protein denaturation enhance light reflectance, 

resulting in higher L values* (lightness) and a paler appearance (Qiao et al., 2001). 

In contrast, high ultimate pH (pHu) limits oxygen penetration and supports the formation of deoxymyoglobin or metmyoglobin, 

giving the meat a darker hue (Mancini & Hunt, 2005). Additionally, a relatively slower or moderate pH decline helps maintain 

color stability by supporting better enzymatic function and oxygen binding in muscle tissues (Toldrá et al., 2006). 

The quantitative assessment of meat color typically involves parameters such as L (lightness), a (redness), and b* 

(yellowness)**. A negative correlation between pHu and L values* has been observed in pork and poultry, confirming that 

higher pH results in darker meat (Qiao et al., 2001). Jankowiak et al. (2021) further demonstrated that both initial pH (pH₄₅) and 

ultimate pH (pHu) significantly influence meat quality traits such as color, water-holding capacity, and tenderness. Specifically, 

lower pH₄₅ values are associated with PSE conditions paler and softer meat with reduced pigment content while higher pH₄₅ 
values result in darker, firmer meat with greater pigment concentration. A strong negative correlation (r = −0.566, p < 0.01) 

between pH₄₅ and L* value further supports this relationship. 

Overall, the rate and extent of postmortem acidification are critical determinants of meat color and visual quality, with faster pH 

decline typically leading to undesirable pale coloration, and slower decline contributing to better color retention and quality 

(Hunt et al., 2016). 
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Figure 1: Relation between meat pH and color. 

Relationship Between pH and Tenderness 

Meat tenderness is widely recognized as the most important factor influencing meat eating quality and consumer satisfaction 

(Marchello and Dryden et al., 1987; Lásztity, 1990). However, it remains one of the most challenging traits to predict accurately, 

due to the complex interaction of numerous factors (Dinh, 2008). Both pre-slaughter and post-slaughter conditions influence 

tenderness, including muscle contraction during rigor mortis, the amount and structure of connective tissue, and the activity of 

endogenous proteolytic enzymes, particularly calpains and cathepsins (Jennifer 2008). Beef tenderness is impacted by a variety 

of intrinsic factors such as the ultimate pH of muscle (Grayson et al., 2016; Maddock et al., 2005). 

Tenderness is a multidimensional trait involving not just the initial bite (incisor tenderness) but also overall chewing experience, 

which is shaped by factors such as fiber cohesiveness, friability, softness, chew count, and the presence of residual connective 

tissue (Juárez et al., 2010). These physical attributes collectively contribute to meat’s texture and mouthfeel, which are directly 

affected by pH through its regulation of muscle structure, enzyme activity, and water retention. 

Table 1. Postmortem Enzymes Involved in Meat Tenderness at Different pH Levels 

Enzyme Optimal pH Role in Tenderization Inhibition at Extreme pH Contribution to Meat Quality 

µ-Calpain 5.8–6.2 Degrades myofibrillar proteins ↓ Activity <5.5 or >6.5 ↑ Tenderness 

m-Calpain ~7.0 Supports late-phase proteolysis ↓ Activity <6.0 Moderate 

Cathepsins 4.5–5.5 Active in acidic lysosomes ↓ Activity >5.8 Low-moderate 

Caspases 6.5–7.2 Apoptosis-related proteolysis ↓ Activity <6.0 Under investigation 

This table summarizes the major proteolytic enzymes contributing to postmortem tenderization in meat and how their activity is modulated by ultimate pH. 

According to Koohmaraie & Geesink (2006), tenderization is optimal when pH falls to approximately 5.6–5.8, activating 

calpains, which are calcium-dependent proteases responsible for degrading myofibrillar proteins. The μ-calpain enzyme system, 

critical for postmortem proteolysis, shows peak activity at pH 6.0–6.5, with reduced function at excessively low or rapidly 

declining pH values. m-Calpain, although structurally similar to μ-calpain, requires higher calcium concentrations and is less 

active at the acidic conditions that typically develop postmortem (Huff-Lonergan & Lonergan, 2005). Cathepsins, a group of 

lysosomal enzymes (particularly cathepsins B, D, H, and L), are optimally active in the acidic range of pH 4.5–5.5 (Sentandreu 

et al., 2002). These enzymes may contribute to tenderization especially under conditions of muscle stress or prolonged cold 

storage where lysosomal membranes degrade, allowing cathepsins to interact with myofibrillar proteins. Caspases, traditionally 

associated with apoptosis, are now being explored in meat science for their role in initiating proteolysis immediately after 

slaughter. These enzymes function in a slightly alkaline range (pH 6.5–7.2) but are generally inactivated by the acidic 

postmortem environment (Herrera-Mendez et al., 2006). 

According to Koohmaraie & Geesink (2006), tenderization is optimal when pH falls to approximately 5.6–5.8, activating 

calpains, which are calcium-dependent proteases responsible for degrading myofibrillar proteins. The μ-calpain enzyme system, 

critical for postmortem proteolysis, shows peak activity at pH 6.0–6.5, with reduced function at excessively low or rapidly 

declining pH values. 

A rapid postmortem pH decline, especially when carcass temperatures remain high, can lead to heat shortening and protein 

denaturation, reducing the effectiveness of calpains and ultimately resulting in tougher meat (Morgan et al., 1991; Petracci et al., 

2019). Conversely, very high ultimate pH (pHu) can also hinder calpain activity due to limited calcium ion mobility, which 

impairs proper tenderization. Therefore, a moderate rate of pH decline is considered most favorable for the development of 

tenderness (Zhang et al., 2018). 

The ultimate pH also has a notable impact on both meat tenderness and water-holding capacity (WHC). Higher pHu values are 

often associated with reduced drip loss but increased shear force (WBSF), indicating tougher meat. Jankowiak et al. (2021) 

reported a strong positive correlation between pHu and shear force (r = 0.517, p < 0.01), suggesting that meat becomes less 

tender at higher pH. On the other hand, low pHu contributes to increased drip loss, lower WHC, and softer, paler meat. 

In summary, both the early postmortem pH (e.g., pH₄₅) and ultimate pH (pHu) are key determinants of pork tenderness and 

overall meat quality. While pH₄₅ is more strongly associated with meat color and initial postmortem biochemical changes, pHu 

exerts a more significant influence on technological traits such as tenderness and WHC (Jankowiak et al., 2021).  

Achieving optimal tenderness thus depends on maintaining a controlled and moderate pH decline, allowing for effective 

enzymatic action and preservation of muscle structure. 

Breast muscle with high 

glycogenic potential 

Increased postmortem acidification

pH ˂ 5.8 leading to 

the isoelectric point 

of proteins

Structural changes 

increased light 

scattering

Poor water holding 

capacity and pale 

color
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Figure 2: Relationship between meat pH and tenderness. 

Relationship among pH, Color, and Tenderness 

pH serves as a central factor linking color and tenderness. Meat with an intermediate ultimate pH (~5.6) typically exhibits 

acceptable color and tenderness. Both extremely low and high pH values negatively impact these traits, though the mechanisms 

differ. Cooper et al., (2025) that relationships exist between tenderness and lean color stability. Moreover, animal variation in 

both tenderness and color stability is influenced by muscle metabolism. Increasing the rate and extent of pH decline, within the 

normal range, has been reported to improve tenderness (Eilers et al., 1996; Jones and Tatum, 1994) and lean color (Zhang et al., 

2018). 

Compared to other muscles on the carcass, the semimembranosus (SM) muscle begins at the highest temperature and takes 

longer to dissipate heat. Hannula and Puolanne (2004). According to Mohrhauser et al. (2014), slower postmortem temperature 

reductions cause faster pH declines, indicating that temperature and pH are not independent variables. Additionally, meat that is 

lighter in color and has less protein functionality due to higher pH combined with delayed temperature drops has a reduced 

ability to store water (Jacob and Hopkins, 2014). The cause of the discoloration seen in the SM at the area nearest the femur 

bone is myoglobin denaturation brought on by high temperatures and low pH levels, which also causes enzyme denaturation and 

may result in tenderness problems (Kim et al., 2010). 

This figure illustrates the simultaneous effect of ultimate pH on two critical meat quality traits: color (L*) and tenderness (shear 

force) in beef. The data represents a theoretical model derived from empirical studies in meat science literature. Color (L)* peaks 

around pH 5.8, producing bright red, consumer-acceptable meat. At lower or higher pH, meat appears pale (PSE) or dark (DFD), 

respectively. Tenderness (inverse of shear force) is optimal near pH 5.8–6.0, where proteolytic enzyme activity is favorable. At 

extremes (below 5.5 or above 6.3), meat becomes tougher due to limited enzymatic breakdown or altered fiber structure. 

Studies have reported that beef samples with pH <5.5 tend to be lighter in color but tougher due to heat-induced shortening, 

whereas samples with high pH (>6.0) are darker and less tender due to reduced enzymatic degradation (Huff-Lonergan & 

Lonergan, 2005; Watanabe et al., 1996). 

Figure 3. Combined Influence of ultimate pH on Meat Color (L*), Tenderness (Shear Force) in beef. 
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Figure 4: The colour of meat at various pH levels. With the upper control threshold for the ultimate pH at 5.8, meat with an 

ultimate pH equal or greater than this is classified as dry, firm and dark (DFD). 

Table 1: The events causing PSE and DFD meat 

PSE meat DFD meat 

Acute stress  Chronic stress  

Rapid initial acidification  Reduced glycogen  

Low initial pH at high carcass  High ultimate pH temperature  
Proteins denature  Proteins do not denature  

Low water-holding capacity  High water-holding capacity 

‘Bound’ water lost  Water held by proteins  
Muscle fibres separate  Fibres tightly packed 

Large extracellular space  Small extracellular space 

Light scattering high  Light scattering low  
Surface appears pale  Surface dark  

Low pH promotes Mb oxidation  O2 diffusion inhibited by closed structure 

Reduction in absorption of green  O2 used up by high cytochrome light by Mb activity  
Meat looks less red MbO2 layer thin and underlying Mb (purple) shows through 

Source: (Warriss, 2010). 

Table 2: Interrelationship among pH, Color, and Tenderness 

pH Range Color (L*) Tenderness 

≤ 5.4 Pale (high L*) Reduced (protein denaturation) 

5.5–5.8 Desirable Optimal 

≥ 6.0 Dark (low L*) Juicier and more tender early 

According to Morrow et al. (2019), high-pH meat had lower shear force values, indicating improved tenderness, while Listrat et al. (2016) emphasized the structural 

influence of muscle fibers in supporting WHC and tenderness. 

Table 3: Differences of meat ccolor  

Meat Type Influencing Factors 
Effect of pH on  

Color and Tenderness 
Reference 

Beef 
Muscle fiber type and postmortem 
metabolism 

pH decline affects protein denaturation and sarcomere shortening, influencing 
tenderness and meat color stability 

Boles et 
al., 2018 

Pork 
Genetic susceptibility to PSE (Pale, 

Soft, Exudative) condition 

Rapid postmortem pH drop leads to excessive protein denaturation, resulting 

in pale color, soft texture, and poor water-holding capacity 

Lonergan 

et al., 
2015 

Poultry Chilling rate and muscle pH 
Faster pH decline combined with slow chilling enhances protein denaturation, 

negatively affecting tenderness and causing pale coloration 

Petracci et 

al., 2019 

Conclusions 

pH plays a pivotal role in determining meat color and tenderness by influencing postmortem biochemical pathways and 

structural integrity. Maintaining an optimal pH decline during rigor mortis is essential for achieving desirable meat quality. 

Understanding these relationships can guide producers and processors in managing pre- and post-slaughter conditions to enhance 

meat quality traits. 
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